A New Signature-Based Method for Efficient 3-D Object Recognition
نویسندگان
چکیده
This paper considers the problem of shape-based recognition and pose estimation of 3-D free-form objects in scenes that contain occlusion and clutter. Our approach is based on a novel set of discriminating descriptors called spherical spin images, which encode the shape information conveyed by classes of distributions of surface points constructed with respect to reference points on the surface of an object. The key to this approach is the relationship that exists between the l2 metric, which compares n-dimensional signatures in Euclidean space, and the metric of the compact space on which the class representatives (spherical spin images) are defined. The connection allows us to efficiently utilize the linear correlation coefficient to discriminate scene points which have spherical spin images that are similar to the spherical spin images of points on the object being sought. The paper also addresses the problem of a compressed spherical-spin-image representation by means of a random projection of the original descriptors that reduces the dimensionality without a significant loss of recognition/localization performance. Finally, the efficacy of the proposed representation is validated in a comparative study of the two algorithms introduced here that use uncompressed and compressed spherical spin images versus two previous spin image algorithms reported recently in the literature. The results of 2012 experiments suggest that the performance of our proposed algorithms is significantly better with respect to accuracy and speed than the performance of the other algorithms tested.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملUse of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملThe new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملColour-Based Model Pruning for Efficient ARG Object Recognition
In this paper we address the problem of object recognition from 2D views. A new approach is proposed which combines the recognition systems based on Attribute Relational Graph matching (ARG)[2] and the Multimodal Neighbourhood signature (MNS) [7] method. In the new system we use the MNS method as a pre-matching stage to prune the number of model candidates. The ARG method then identifies the be...
متن کامل